

# Normally – OFF Silicon Carbide Super Junction Transistor

| V <sub>DS</sub>     | = | 650 V  |
|---------------------|---|--------|
| $V_{DS(ON)}$        | = | 1.4 V  |
| $I_D$               | = | 8 A    |
| $R_{\text{DS(ON)}}$ | = | 170 mΩ |

#### **Features**

- 250 °C maximum operating temperature
- Temperature independent switching performance
- Gate oxide free SiC switch
- Suitable for connecting an anti-parallel diode
- · Positive temperature coefficient for easy paralleling
- · Low gate charge
- · Low intrinsic capacitance

#### **Package**

RoHS Compliant





SMD0.5 / TO - 276 (Hermetic Package)

#### **Advantages**

- Low switching losses
- Higher efficiency
- High temperature operation
- · High short circuit withstand capability

## **Applications**

- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

### Maximum Ratings at $T_i$ = 250 °C, unless otherwise specified

| Parameter                         | Symbol           | Conditions              | Values     | Unit |
|-----------------------------------|------------------|-------------------------|------------|------|
| Drain – Source Voltage            | $V_{DS}$         | V <sub>GS</sub> = 0 V   | 650        | V    |
| Continuous Drain Current          | I <sub>D</sub>   | T <sub>C</sub> = 158 °C | 8          | Α    |
| Gate Peak Current                 | $I_{GM}$         |                         | 5          | Α    |
| Reverse Gate – Source Voltage     | $V_{GS}$         |                         | 200        | V    |
| Reverse Drain – Source Voltage    | $V_{DS}$         |                         | 40         | V    |
| Power Dissipation                 | P <sub>tot</sub> | T <sub>C</sub> = 25 °C  | 11         | W    |
| Operating and Storage Temperature | $T_{j},T_{stg}$  |                         | -55 to 250 | °C   |

### Electrical Characteristics at T<sub>i</sub> = 250 °C, unless otherwise specified

| Parameter                    | Comple el     | Conditions                                                                 | Values |      | I I mit |      |
|------------------------------|---------------|----------------------------------------------------------------------------|--------|------|---------|------|
|                              | Symbol        | Conditions                                                                 | min.   | typ. | max.    | Unit |
| On Characteristics           |               |                                                                            |        |      |         |      |
|                              |               | I <sub>D</sub> = 8 A, I <sub>G</sub> = 250 mA, T <sub>j</sub> = 25 °C      |        | 1.4  |         |      |
| Drain – Source On Voltage    | $V_{DS(ON)}$  | $I_D = 8 \text{ A}, I_G = 500 \text{ mA}, T_j = 175 °C$                    |        | 2.6  |         | V    |
|                              |               | $I_D = 8 \text{ A}, I_G = 500 \text{ mA}, T_j = 250 ^{\circ}\text{C}$      |        | 3.9  |         |      |
|                              |               | $I_D = 8 \text{ A}, I_G = 250 \text{ mA}, T_j = 25 ^{\circ}\text{C}$       |        | 170  |         | mΩ   |
| Drain – Source On Resistance | $R_{DS(ON)}$  | $I_D = 8 \text{ A}, I_G = 500 \text{ mA}, T_j = 175 °C$                    |        | 330  |         |      |
|                              | - (- )        | $I_D = 8 \text{ A}, I_G = 500 \text{ mA}, T_j = 250 ^{\circ}\text{C}$      |        | 550  |         |      |
| Gate Forward Voltage         | V             | $I_G = 500 \text{ mA}, T_j = 25 \text{ °C}$                                |        | 3    |         | V    |
|                              | $V_{GS(FWD)}$ | $I_G = 500 \text{ mA}, T_j = 250 \text{ °C}$                               |        | 2.7  |         |      |
| DC Current Gain              | 0             | $V_{DS} = 5 \text{ V}, I_{D} = 10 \text{ A}, T_{j} = 25 \text{ °C}$        |        | 120  |         |      |
|                              | β             | $V_{DS} = 5 \text{ V}, I_{D} = 10 \text{ A}, T_{j} = 250 ^{\circ}\text{C}$ |        | 80   |         |      |

### **Off Characteristics**

|                       |                  | $V_R = 650 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 25 \text{ °C}$            | 2.5 |    |
|-----------------------|------------------|-----------------------------------------------------------------------------|-----|----|
| Drain Leakage Current | I <sub>DSS</sub> | $V_R = 650 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 175 ^{\circ}\text{C}$     | 4   | μΑ |
|                       |                  | $V_{P} = 650 \text{ V}$ , $V_{CS} = 0 \text{ V}$ , $T_{i} = 250 \text{ °C}$ | 10  |    |



# Electrical Characteristics at T<sub>i</sub> = 250 °C, unless otherwise specified

| Parameter                           | Cymahal          | Conditions                                                                                          | Values |      | 1114 |      |
|-------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|--------|------|------|------|
| Parameter                           | Symbol           | Conditions                                                                                          | min.   | typ. | max. | Unit |
| Dynamic Characteristics             |                  |                                                                                                     |        |      |      |      |
| Input Capacitance                   | C <sub>iss</sub> | V 05VV 0V                                                                                           |        | 720  |      | pF   |
| Output Capacitance                  | C <sub>oss</sub> | $V_{DS} = 35 \text{ V}, V_{GS} = 0 \text{ V},$<br>$f = 1 \text{ MHz}, T_{vi} = 25 ^{\circ}\text{C}$ |        | 88   |      | pF   |
| Reverse Transfer Capacitance        | $C_{rss}$        | 1 - 1 WH12, 1 <sub>vj</sub> - 23 C                                                                  |        | 88   |      | pF   |
| Switching Characteristics           |                  |                                                                                                     |        |      |      |      |
| Turn On Delay Time                  | $t_{d(on)}$      |                                                                                                     |        | 11   |      | ns   |
| Rise Time                           | t <sub>r</sub>   | $V_{DD} = 400 \text{ V}, I_D = 10 \text{ A},$                                                       |        | 28   |      | ns   |
| Turn Off Delay Time                 | $t_{\sf d(off)}$ | $R_{G(on)} = R_{G(off)} = 32 \Omega,$                                                               |        | 76   |      | ns   |
| Fall Time                           | t <sub>f</sub>   | $V_{GS} = -8/15 \text{ V}, T_j = 175 ^{\circ}\text{C}$                                              |        | 38   |      | ns   |
| Turn-On Energy Per Pulse            | E <sub>on</sub>  | Refer to Figure 10 for gate drive current waveforms                                                 |        | 34   |      | μJ   |
| Turn-Off Energy Per Pulse           | E <sub>off</sub> |                                                                                                     |        | 64   |      | μJ   |
| Total Switching Energy              | E <sub>ts</sub>  |                                                                                                     |        | 98   |      | μJ   |
| Turn On Delay Time                  | $t_{d(on)}$      |                                                                                                     |        | 12   |      | ns   |
| Rise Time                           | t <sub>r</sub>   | V <sub>DD</sub> = 400 V. I <sub>D</sub> = 10 A.                                                     |        | 30   |      | ns   |
| Turn Off Delay Time                 | $t_{d(off)}$     | $R_{G(on)} = R_{G(off)} = 32 \Omega,$                                                               |        | 73   |      | ns   |
| Fall Time                           | t <sub>f</sub>   | $V_{GS}$ = -8/15 V , $T_{j}$ = 250 °C<br>Refer to Figure 10 for gate drive<br>current waveforms     |        | 58   |      | ns   |
| Turn-On Energy Per Pulse            | E <sub>on</sub>  |                                                                                                     |        | 43   |      | μJ   |
| Turn-Off Energy Per Pulse           | E <sub>off</sub> |                                                                                                     |        | 82   |      | μJ   |
| Total Switching Energy              | E <sub>ts</sub>  |                                                                                                     |        | 125  |      | μJ   |
| Thermal Characteristics             |                  |                                                                                                     |        |      |      |      |
| Thermal resistance, junction - case | $R_{thJC}$       |                                                                                                     |        | 1    |      | °C/W |

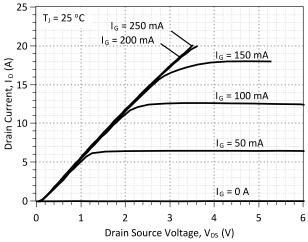



Figure 1: Typical Output Characteristics at 25 °C

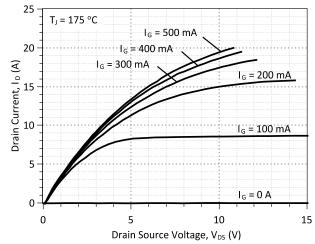



Figure 2: Typical Output Characteristics at 175 °C



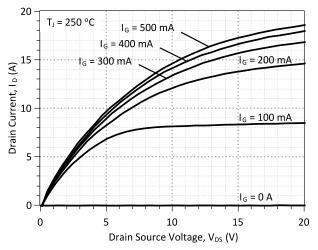



Figure 3: Typical Output Characteristics at 250 °C

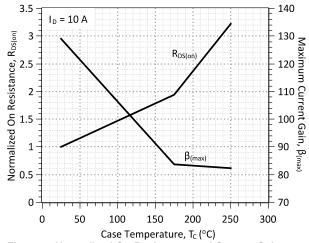



Figure 5: Normalized On-Resistance and Current Gain vs. Temperature

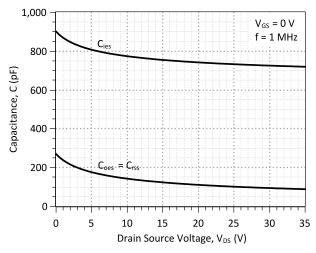



Figure 7: Typical Capacitance vs Drain-Source Voltage

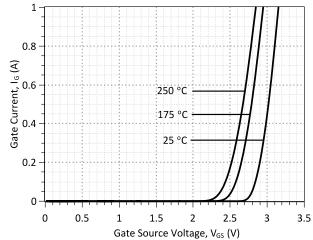



Figure 4: Typical Gate Source I-V Characteristics vs.
Temperature

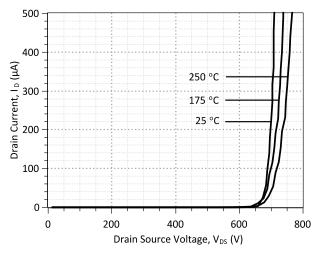



Figure 6: Typical Blocking Characteristics

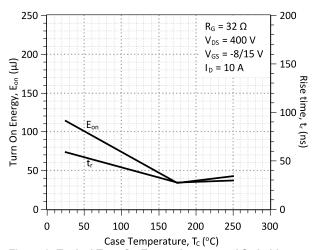



Figure 8: Typical Turn On Energy Losses and Switching Times vs. Temperature

Pg3 of 5



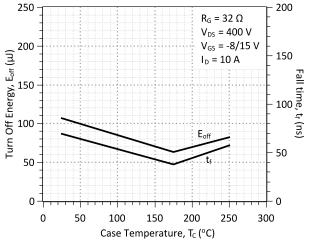



Figure 9: Typical Turn Off Energy Losses and Switching Times vs. Temperature

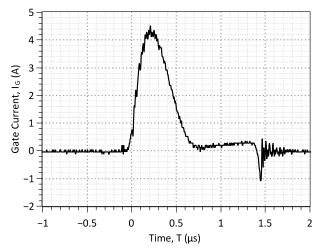
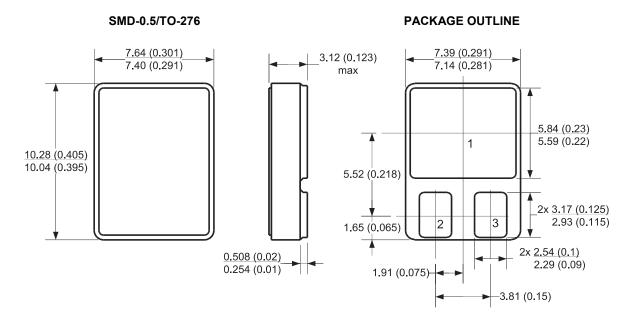




Figure 10: Typical Gate-Source Switching Waveforms

# **Package Dimensions:**



- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
  2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS



| Revision History |          |                 |            |  |  |  |
|------------------|----------|-----------------|------------|--|--|--|
| Date             | Revision | Comments        | Supersedes |  |  |  |
| 2012/08/24       | 0        | Initial release |            |  |  |  |
|                  |          |                 |            |  |  |  |

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Pg**5** of **5**